The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswireThe present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswire

Pusan National University Researchers Discover Faster, Smarter Heat Treatment for Lightweight Magnesium Metals

The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium 

BUSAN, South Korea, Dec. 23, 2025 /PRNewswire/ — Electropulsing treatment (EPT) is a state-of-the-art technology for rapidly heating metallic materials. The highly energy-efficient and eco-sufficient process utilizes a pulsed current or ‘electropulse,’ achieving unique effects such as electroplasticity and electropulsing anisotropy. It facilitates fast microstructural evolution in alloys—compared to the conventional furnace heat treatment (FHT) technique—possibly via athermal contributions that go beyond the effects of Joule heating.

Recent efforts by scientists to determine these athermal contributions have focused on direct comparisons between EPT and FHT at the same temperatures. However, such approaches are expected to suffer from significant experimental errors.

In a new study, a team of researchers from Korea, led by Professor Taekyung Lee, a faculty at the School of Mechanical Engineering at Pusan National University and the head of the Metal Design & Mechanics (MEDEM) Lab, has utilized a special “T-shaped” magnesium sample that facilitates the separation of the normal heating effects from the extra, athermal effects of EPT. Their findings were made available online and have been recently published in the Journal of Magnesium and Alloys on 08 December 2025.

Prof. Lee highlights the novelty of their work, “Our innovative T-type specimen methodology separates the current and heat transfer paths within a single specimen subjected to EPT. This pioneering methodology is contrasted by the conventional method that compared two different specimens: one with EPT and the other with FHT at a similar temperature. This traditional methodology possesses lots of inherent limitations. On the other hand, the T-type specimen methodology allows for the independent analysis of thermal and athermal effects of EPT within a single specimen.”

By carefully controlling the electric current in a pre-twinned AZ31 magnesium alloy sample, the team created two regions in the same sample that reached almost the same temperature, but only one region actually carried current. They found that the region carrying current showed enhanced strain-induced boundary migration mechanism, much faster grain growth, twin boundary removal, low-angle grain boundary reduction, dislocation annihilation, and softening than the region heated only by conduction. This proves that EPT can accelerate microstructural changes beyond what can be explained by heat alone.

The researchers verified their results using finite element analysis, which confirmed electric current flow confinement to a single beam and reliably reproduced the curved thermal distribution observed at the beam intersection in the T-type specimen.

Prof. Lee sheds light on the long-term implications of their innovative technology, “Measuring the athermal effect without Joule heat, or thermal effect, in the EPT process has long been a major challenge in academia. The developed methodology can help researchers understand the physical principles governing EPT. It is, therefore, expected to become a core standard measuring technology for advancing high-efficiency and eco-friendly forming techniques—known as electrically-assisted forming—for various metallic materials using electropulses.”

Overall, the T-type specimen approach presented in this study offers a robust framework for separating the thermal and athermal effects of EPT at the macroscale, thus providing an indispensable tool for elaborating their respective roles in EPT-driven microstructures and mechanical properties.

Reference
Title of original paper: Validating the athermal contribution of electropulsing treatment utilizing T-type Mg specimen
Journal: Journal of Magnesium and Alloys
DOI: 10.1016/j.jma.2025.11.017

About Pusan National University
Website: https://www.pusan.ac.kr/eng/Main.do 

Media Contact:
Goon-Soo Kim
82 51 510 7928
406710@email4pr.com

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/pusan-national-university-researchers-discover-faster-smarter-heat-treatment-for-lightweight-magnesium-metals-302648151.html

SOURCE Pusan National University

Market Opportunity
Threshold Logo
Threshold Price(T)
$0.008242
$0.008242$0.008242
+0.26%
USD
Threshold (T) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Share
BitcoinEthereumNews2025/09/18 00:09
XRP Escrow Amendment Gains Momentum, Set for February 2026 Activation

XRP Escrow Amendment Gains Momentum, Set for February 2026 Activation

TLDR The XRP Ledger’s Token Escrow amendment has gained 82.35% consensus and is set for activation on February 12, 2026. This amendment allows users to escrow a
Share
Coincentral2026/01/31 01:00
ZKP’s 300x Potential Takes Center Stage as XRP Price Shifts and Algorand News Turns Cautious

ZKP’s 300x Potential Takes Center Stage as XRP Price Shifts and Algorand News Turns Cautious

ZKP takes focus as XRP price tests a macro shift and Algorand news signals caution, reshaping views on structure and the best crypto to buy.
Share
Blockchainreporter2026/01/31 01:00