We obtained reed bees from the Dandenong Ranges National Park, Victoria, Australia (lat. -37.90, long 145.37) These bees exhibit semi-social behaviour and construct their nests within the pithy stems of fern fronds and other plants. We placed each insect in a separate container to facilitate individual id for testing. In order to run the experiment over several days, insects were refrigerated overnight below 4°C. After warming up, each bee was individually recorded daily in an arena. Here it was illuminated by an overhead ring light and videoed using a Dino-Lite digital microscope for 30–50 seconds per session at 30 fps.We obtained reed bees from the Dandenong Ranges National Park, Victoria, Australia (lat. -37.90, long 145.37) These bees exhibit semi-social behaviour and construct their nests within the pithy stems of fern fronds and other plants. We placed each insect in a separate container to facilitate individual id for testing. In order to run the experiment over several days, insects were refrigerated overnight below 4°C. After warming up, each bee was individually recorded daily in an arena. Here it was illuminated by an overhead ring light and videoed using a Dino-Lite digital microscope for 30–50 seconds per session at 30 fps.

A New Era of Markerless Insect Tracking Technology Has been Unlocked by Retro-ID

Abstract and 1. Introduction

  1. Related Works
  2. Method
  3. Results and Discussion
  4. Conclusion and References

2. Related Works

Explicit recognition of retro-id’s value as distinct from reid, and a need to test its performance are, to the best of our knowledge, novel. Re-id however, is well researched for human faces [12, 13, 19, 20, 24], and somewhat so for insects [2–4, 11, 14–16]. Insect re-id algorithms may rely on small markers or tags attached to an insect to track it over separate observations [2, 4, 14, 15]. Six ant colonies were monitored using tags over 41 days, collecting approximately nine million social interactions to understand their behaviour [14]. BEETag, a tracking system using bar codes, was used for automated honeybee tracking [4], and Boenisch et al. [2] developed a QR-code system for honeybee lifetime tracking. Meyers et al. [15] demonstrated automated honeybee re-id by marking their thoraxes with paint, while demonstrating the potential of markerless reid using their unmarked abdomens. Markerless re-id has been little explored. The study of Giant honeybees’ wing patterns using size-independent characteristics and a selforganising map was a pioneering effort in non-invasive reid [11]. Convolutional neural networks have been used for markerless fruit fly re-id [16] and triplet-loss-based similarity learning approaches have also been used to re-id Bumble bees returning to their nests [3].

\ All these studies adopt chronological re-id despite many highly relevant scenarios where this is inefficient. Our study therefore explores retro-id as a novel complementary approach to tracking individual insects for ecological and biological research.

3. Method

3.1. Data Collection

We obtained reed bees from the Dandenong Ranges National Park, Victoria, Australia (lat. -37.90, long. 145.37)[1]. These bees exhibit semi-social behaviour and construct their nests within the pithy stems of fern fronds and other plants [5]. Each nest can consist of several females who share brood-rearing and defence responsibilities. We placed each insect in a separate container to facilitate individual id for testing. In order to run the experiment over several days, insects were refrigerated overnight below 4°C. After warming up, each bee was individually recorded daily in an arena. Here it was illuminated by an overhead ring light and videoed using a Dino-Lite digital microscope for 30–50 seconds per session at 30 fps. We followed the process listed below to create our final datasets.

\

  1. Video Processing: Bee videos were processed frame by frame. To automate this, we trained a YOLO-v8 model to detect a bee’s entire body, head, and abdomen in each frame. This enabled automatic establishment of the bee’s orientation in the frame.

    \

  2. Image Preparation: Upon detection, bees were cropped from the frames using the coordinates provided by Step 1To align bees, we rotated frames using a bee’s orientation before cropping. Centred on the detected entire bee body, a 400x400 pixel region (determined empirically for our bee/microscope setup) was cropped, then resized to 256x256.

    \

  3. Contrast Adjustment: To enhance image quality and ensure uniform visibility across all samples, Contrast Limited Adaptive Histogram Equalisation (CLAHE) [18] was applied.

    \

  4. Quality Control: Manual inspection to remove misidentified objects maintained dataset integrity and ensured only bee images were included.

    \

  5. Dataset Segregation: The final dataset was divided into image subsets, each from a single session, to avoid temporal data leakage.

\ Using Steps 1–5, we curated a dataset of daily bee recording sessions across five consecutive days. Each session included the same 15 individuals videoed for approximately 1200 images/session (total dataset approximately 90K images).

3.2. Network Architecture, Training, Evaluation

We used a transfer-learning-based approach for re-/retro-id of the reed bees. All models were pre-trained on the ImageNet dataset [6] and subsequently fine-tuned using our own dataset. To identify suitable transfer-learning models, we selected 17 different models distributed across 10 different model architectures and parameter numbers ranging from 49.7 million in swinv2s to 0.73 million parameters in squeezenet1_0. To evaluate the models, we collected a second set of data on Day 5, “set-2”, four hours from the first set using Steps 1–5 (above). We trained all 17 models on the first set of Day 5 data. The 17 models were then evaluated based on their ability to re-id individuals in Day 5 set2 data. From them, we selected the seven models with the highest Accuracy (and F1) scores for further consideration. We then trained this top-7 on our original Day 1 and Day 5 data. We evaluated Day 1 models forward on Day 2–5 data and Day 5 models back in time on Day 4–1 data to conduct our main experiments. These forward and backwards evaluations allowed comparison of markerless re- and retro- id of individual insects. The training process was similar for all of the models we considered. We have used Adam Optimiser with a learning rate of 0.001 with 0.0001 weight decay, with a total 100 epochs on the training dataset. We used cross-entropy loss as the loss function for these models.

Figure 2. Re/retro-identification accuracy of regnet y 3 2gf model where re-identification is shown as forward identification from day 1-5, and retro-identification is shown as backward identification from day 5-1.

\

:::info Authors:

(1) Asaduz Zaman, Dept. of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Australia (asaduzzaman@monash.edu);

(2) Vanessa Kellermann, Dept. of Environment and Genetics, School of Agriculture, Biomedicine, and Environment, La Trobe University, Australia (v.kellermann@latrobe.edu.au);

(3) Alan Dorin, Dept. of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Australia (alan.dorin@monash.edu).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Market Opportunity
Chainbase Logo
Chainbase Price(C)
$0,06942
$0,06942$0,06942
+0,98%
USD
Chainbase (C) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

‘His And Hers’ Finally Dethroned In Netflix’s Top 10 List By A New Show

‘His And Hers’ Finally Dethroned In Netflix’s Top 10 List By A New Show

The post ‘His And Hers’ Finally Dethroned In Netflix’s Top 10 List By A New Show appeared on BitcoinEthereumNews.com. Netflix’s megahit miniseries, His and Hers
Share
BitcoinEthereumNews2026/01/30 01:55
United States B2C Ecommerce Business Report 2025: Amazon, Walmart, Apple, Home Depot, Target Lead the $1.8 Trillion Market, Instacart, DoorDash, Uber Eats Expanded Their Presence – Forecast to 2029 – ResearchAndMarkets.com

United States B2C Ecommerce Business Report 2025: Amazon, Walmart, Apple, Home Depot, Target Lead the $1.8 Trillion Market, Instacart, DoorDash, Uber Eats Expanded Their Presence – Forecast to 2029 – ResearchAndMarkets.com

DUBLIN–(BUSINESS WIRE)–The “United States B2C Ecommerce Market Size & Forecast by Value and Volume Across 80+ KPIs – Databook Q4 2025 Update” report has been added
Share
AI Journal2026/01/30 02:00
Huawei goes public with chip ambitions, boosting China’s tech autonomy post-Nvidia

Huawei goes public with chip ambitions, boosting China’s tech autonomy post-Nvidia

The post Huawei goes public with chip ambitions, boosting China’s tech autonomy post-Nvidia appeared on BitcoinEthereumNews.com. Huawei publicly revealed its full chip roadmap on Thursday during its annual Connect conference in Shanghai, confirming it would begin releasing some of the world’s most powerful computing systems in a push to reduce China’s reliance on Nvidia and other foreign chipmakers, according to Reuters. Eric Xu, Huawei’s rotating chairman, disclosed that the company had developed its own high-bandwidth memory, a technology previously led by Samsung and SK Hynix. Xu said, “We will follow a 1-year release cycle and double compute with each release,” making it clear Huawei now intends to release next-gen chips and hardware annually with increased processing capabilities. The announcement came just days before U.S. President Donald Trump and Chinese President Xi Jinping are expected to meet on Friday, following trade talks between both countries earlier in the week. The move is widely seen as an attempt by Beijing to project confidence in its tech ecosystem as U.S.-China tensions continue to grow. Huawei releases full schedule for Ascend, Kunpeng chips, and computing clusters Huawei detailed the timeline for its AI chip series Ascend, starting with the 910C, which was released earlier this year. The Ascend 950 will launch in 2026 with two variants. The 960 will follow in 2027, and the 970 is scheduled for 2028. Huawei also confirmed its Kunpeng server chips will receive updates in 2026 and 2028. China’s chip war with the U.S. escalated this week as Nvidia was accused of violating China’s anti-monopoly law, and several large Chinese tech firms were ordered to cancel Nvidia AI chip orders. Financial Times reported that government regulators had also instructed distributors to stop placing new Nvidia orders. One executive in China’s chip distribution industry said his company was told verbally to stop buying Nvidia chips and was only allowed to sell current inventory. That executive declined…
Share
BitcoinEthereumNews2025/09/18 21:20