Sin intención de jubilarse, Alejandro Gertz Manero declinó amablemente la invitación del candidato presidencial de Morena para hacer campaña en tierra. En 2018, Andrés Manuel López Obrador necesitaba todos los votos posibles y por eso invitó al rector de la Universidad de la Américas para ser el abanderado de la coalición izquierdista en la alcaldía Miguel Hidalgo.Sin intención de jubilarse, Alejandro Gertz Manero declinó amablemente la invitación del candidato presidencial de Morena para hacer campaña en tierra. En 2018, Andrés Manuel López Obrador necesitaba todos los votos posibles y por eso invitó al rector de la Universidad de la Américas para ser el abanderado de la coalición izquierdista en la alcaldía Miguel Hidalgo.

¿Relevos en el gabinete?

Sin intención de jubilarse, Alejandro Gertz Manero declinó amablemente la invitación del candidato presidencial de Morena para hacer campaña en tierra. En 2018, Andrés Manuel López Obrador necesitaba todos los votos posibles y por eso invitó al rector de la Universidad de la Américas para ser el abanderado de la coalición izquierdista en la alcaldía Miguel Hidalgo.

Entonces, el doctor en derecho estaba por cumplir 80 años. En su extensa carrera, solo una vez había estado en una boleta electoral. Justo una década antes (2009), cuando llegó a San Lázaro cobijado por el entonces partido Convergencia, en el que era presidente del Consejo Consultivo.

Implacable en su ejercicio profesional, Gertz Manero respondió a la invitación del abanderado morenista con una contrapropuesta: integrar la terna para la nueva Fiscalía General de la República. Para ese cargo, AMLO tenía contemplado al exprocurador capitalino, Bernardo Bátiz.

El exsecretario de Seguridad Pública en la administración foxista y exdirigente convergente tuvo más respaldos entre las fuerzas políticas que Batiz –quien posteriormente sería propuesto por el Ejecutivo federal para ser ministro de la SCJN—y con su ratificación en el Senado de la República pudo construir un precedente casi irrepetible: ser el primer titular del nuevo organismo encargado de la seguridad pública (en el 2000) y tres sexenios después, ser el primer titular del órgano constitucional autónomo.

En el sexenio lopezobradorista ejerció su autonomía con fruición (…) hasta el caso Emilio Lozoya. En su convicción, la decisión presidencial de no proceder contra la cúpula peñista fue un punto de inflexión, pero sobre todo sus diferencias de criterios con el consejero jurídico de Palacio Nacional, Julio Scherer Ibarra, propiciaron un alejamiento.

La elección de Claudia Sheinbaum propició una nueva oportunidad para el fiscal. Pero en el primer tramo del segundo piso de la Cuarta Transformación sus diferencias con personajes relevantes del gabinete y legisladores de la coalición gobernante obligaron a abreviar su estancia como ministerio público de la Federación, en medio de una reyerta mediática que forzó la intervención tajante e inapelable de Palacio Nacional.

Fiel a su estilo espartano —corre todas las mañanas, sin falta, y nunca se le vio en un restaurante, entre algunos pormenores destacables— Gertz Manero finalmente atendió las instrucciones superiores. Irá como representante del gobierno de Claudia Sheinbaum a un “país amigo”. ¿A Berlín? ¿Y la embajada mexicana en Washington D.C.?

Desde septiembre pasado, en Palacio Nacional han buscado con denuedo un relevo para Esteban Moctezuma. El ajuste, explican, es necesario para encarar la renegociación del T-MEC.

Su primera opción, Diana Alarcón, ha decidido seguir entre Nueva York y la capital estadounidense y permanecerá al frente de la legación mexicana en el BID. La negativa de Rogelio Ramírez de la O para ser embajador ante el gobierno de Donald Trump fue irrebatible, pero su propuesta de reubicar a Jesús Seade tampoco prosperó.

La salida de Gertz Manero no solo impacta al cuerpo diplomático, sino que podría ser el inicio de un reacomodo en el equipo presidencial. Y es que antes de la ratificación del nuevo titular de la FGR, deberán cumplirse los plazos estipulados en el texto constitucional. Para efectos: el nuevo fiscal iniciará formalmente el primer día del 2026. Y entonces ocurrirá el esperado ajuste al gabinete, que podría seguir con un relevo en la Cancillería.

alberto.aguirre@eleconomista.mx

Te puede interesar

  • El Economista

    Opinión

    ¿Seguridad digital o vigilancia encubierta?

  • El Economista

    Opinión

    Ultimátum hídrico

  • El Economista

    Opinión

    Una nueva cultura salarial

Market Opportunity
ELYSIA Logo
ELYSIA Price(EL)
$0.002359
$0.002359$0.002359
-0.29%
USD
ELYSIA (EL) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40