Durante los primeros 10 meses del 2025 el valor de las ventas del sector ha caído 4.8%, su primer tropiezo desde el 2016, excluyendo el 2020 por su carácter atípico.Durante los primeros 10 meses del 2025 el valor de las ventas del sector ha caído 4.8%, su primer tropiezo desde el 2016, excluyendo el 2020 por su carácter atípico.

Envíos automotrices de México caen 14% afectados por aranceles de Trump

Las exportaciones automotrices de México disminuyeron 14% a tasa interanual en octubre, a 16,122.1 millones de dólares, afectadas por los aranceles del presidente de Estados Unidos, Donald Trump.

En el acumulado de los 10 primeros meses de 2025, estas ventas tuvieron una caída de 4.8%, a 154,946.5 millones de dólares, desliz que resulta el primero para la variable desde el pandémico 2020, aunque si se hace un lado ese año por su carácter atípico, sería el primero desde el 2016, cuando cayó 3.1 por ciento.

Las exportaciones manufactureras reflejan la marcada integración en las cadenas productivas de ambos países, destacando que los envíos manufactureros presentan un crecimiento anual de 8.6% de enero a octubre.

“Sin embargo, en el rubro automotriz se observa una dinámica diferente, pues registró una contracción de 4.8% en lo que va del año, acentuando los retos que mantienen las exportaciones automotrices mexicanas ante la imposición de aranceles vigentes para la industria”, comentaron Janneth Quiroz Zamora y Kevin Louis Castro, analistas de Monex.

Este deterioro se acentuó en septiembre tras el anuncio de Trump de un arancel de 25.0% a los camiones pesados a partir del 1 de octubre, que si bien se pospuso para el 1 de noviembre, generó cautela entre los importadores estadounidenses.

“Si bien la tasa arancelaria efectiva promedio que pagaron las exportaciones mexicanas dirigidas a Estados Unidos fue de 4.68% en agosto y el 84.5% de ellas cumplió con las reglas del T-MEC (un avance notable frente al 47.8% del mismo periodo de 2024), es probable que los aranceles vigentes de nuestro principal socio comercial permanezcan en los próximos meses, como parte de la estrategia de negociación de Trump: (retirar aranceles a cambio de concesiones de México en la revisión del tratado)”, opinaron los analistas de Monex.

Te puede interesar

  • El Economista

    Empresas

    Exportaciones mexicanas aumentan 14.2% impulsadas por manufacturas no automotrices

  • El Economista

    Economía

    Debilidad económica genera recorte de expectativas para 2025 a rango de 0.2 a 0.6%

“Trump no ha abandonado el proteccionismo comercial, por lo que no se pueden descartar nuevos aranceles o el cobro más agresivo de los aranceles anunciados en meses previos”, consideraron Gabriela Siller y Jesús Anacarsis López Flores, analistas de Banco Base.

El 1 de noviembre entraron también en vigor en Estados Unidos los aranceles de 10% para las importaciones de autobuses.

Con datos al mes de agosto, 82.96% de las importaciones de camiones pesados que realiza Estados Unidos (partida 8704) se originó en México.

“Con la entrada en vigor de este arancel se espera que deteriore aún más las exportaciones automotrices a Estados Unidos y el desempeño de la industria de fabricación de equipo de transporte en México”, dijeron los analistas de Banco Base.

Las exportaciones de manufacturas no automotrices explican 63.2% de las exportaciones totales de México de enero a octubre de 2025, subiendo desde 58.1% en el mismo periodo del 2024 y su mayor proporción para un periodo igual desde 2009 (65.0 por ciento).

Para los analistas de Banco Base, esto se debe a que los aranceles que Estados Unidos impuso a México bajo la Ley de Poderes Económicos de Emergencia Internacional (IEEPA), no se están cobrando al pie de la letra y el cumplimiento de México con el T-MEC se mantiene elevado, mientras que los aranceles sectoriales que se aplican al sector automotriz sí se están cobrando.

Por esta razón, las exportaciones automotrices acumulan una contracción en 2025, mientras que las exportaciones manufactureras distintas al sector automotriz siguen creciendo.

El 83.9% de las exportaciones no petroleras entre enero y octubre del 2025 se dirigen a Estados Unidos y acumulan un crecimiento de 8.0%, explicado por las exportaciones distintas al sector automotriz que acumulan un avance de 15.1%, mientras que las exportaciones automotrices acumulan un retroceso de 5.9%, consecuencia de los aranceles impuestos por la Administración Trump.

imageEnlace imagen

Gráfico EE

Market Opportunity
PortugalNationalTeam Logo
PortugalNationalTeam Price(POR)
$0.7625
$0.7625$0.7625
+0.21%
USD
PortugalNationalTeam (POR) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40